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The measure of the orthogonal polynomials related to
Fibonacci chains: the periodic case*

Wolfdieter Lang†
Institut für Theoretische Physik, Universität Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe,
Germany

Received 6 June 1995, in final form 30 January 1996

Abstract. The spectral measure for the two families of orthogonal polynomial systems related
to periodic chains withN -particle elementary unit and nearest-neighbour harmonic interaction
is computed using two different methods. The interest is in the orthogonal polynomials related
to Fibonacci chains in the periodic approximation. The relation of the measure to appropriately
defined Green’s functions is established.

1. Introduction

Two associated families of orthogonal polynomial systems govern longitudinal time-
stationary vibrations of linear chains with nearest-neighbour harmonic interaction
(springsκn, massesmn).

These polynomials are defined by three-term recurrence relations appropriate for
orthogonal polynomials [1]. In the case of a mono-atomic chain (massm0) with uniform
coupling (strengthκ) they are deformations of Chebyshev’sSn(2(1 − x)) ≡ Un(1 − x)

polynomials of the second kind.x ≡ ω2/2ω2
0, with ω2

0 = κ/m0, is a normalized frequency-
squared.

Our interest is in Fibonacci chains which have uniform coupling (κn = κ) and two
masses (mass ratior ≡ m1/m0) distributed at site numbern = 1, 2, . . . in accordance with
the binary sequence 1, 0, 1, 1, 0, 1, 0, . . . . This quasi-periodic sequence is generated by the
Fibonacci substitution rule 1→ 1, 0 and 0→ 1. Such chains have been considered as simple
models for special binary alloys [2]. The same structure is encountered in the problem of the
phonon spectrum of a one-dimensional Fibonacci quasicrystal [3]. In this case the associated
orthogonal polynomial systems are denoted by{S(r)

n (x)} and{Ŝ(r)
n (x)} [4]. Up to now their

spectral measures (or moment functionals) have not been determined. From rigorous results
on the Fibonacci Hamiltonian in the context of the one-dimensional Schrödinger equation
one expects that this measure is of the singular continuous type supported by a Cantor set
of zero Lebesgue measure [5].

As an approximation to the quasiperiodic problem we identify in this work the spectral
measure forperiodic Fibonacci chains with an elementary unit consisting ofN masses
following the pattern of the firstN entries of the above given binary sequence. The measures
for generalN -periodic orthogonal polynomial systems{Sn(x)} and {Ŝn(x)}, defined by
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three-term recursion relations withN -periodic coefficients, can be found using two different
methods.

The first method employs the Bloch–Floquet solutions for these periodic chains and is
based on the evaluation of a (judiciously chosen) complex contour integral. This is a special
application of a general method available for orthogonal polynomials with asymptotically
periodic coefficients in the recursion relation [6]. For our purpose only the strictly periodic
case is of interest. With this restriction a similar procedure is discussed in [7]. Thesecond
methoduses the fact that the continued fraction associated with orthogonal polynomials
is the Stieltjes transform [8] of the spectral measure [1, 9]. For periodic systems this
continued fraction can be determined as fixed-point of a certain Möbius transformation, and
the measure is then obtainedvia the Perron–Stieltjes inversion formula (see e.g. [8, 10, 11]).

It turns out that the support of the absolutely continuous part of the measure (the weight
function) is, for fixedN -periodic chain parametersκn, mn, given byN , in general disjoint,
x-intervals (bands). These are determined from the generalized Chebyshev polynomials of
the first kindTN(x), the so-called trace polynomials, by the condition|TN(x)| 6 1. These
bands coincide with the support of the spectral density (or density of states) of infinite
chains. The weight function is, however, not given by the density of states. In general, a
discrete point measure (Diracδ-function measure) is also present. Each gap between theN

intervals which support the continuous measure may contribute one point (which may lie
on one of the band boundaries).

In the case of Fibonacci chains the limitN → ∞ is supposed to correspond to the chains
based on the quasi-periodic binary Fibonacci sequence. At present this limit is beyond our
control.

The connection of the absolutely continuous part of theS andŜ measures to the inverse
of the imaginary part of the diagonal input Green’s functions for the periodic problem is
given in an extra section. The differential spectral density (or differential density of states)
is recovered, as usual, from the imaginary part of the average over the elementaryN -unit
of the diagonal (or local) Green’s functions.

In order to familiarize the reader with our notation we start with the dynamical equations
for the displacementsqn(t) = qn exp(iωt) at site numbern

qn+1 − 2

(
1 + kn

2
− ω2

0

ω2
n

x

)
qn + kn qn−1 = 0 n ∈ Z (1.1)

with ω2
n ≡ κn/mn, kn ≡ κn−1/κn and the normalized frequency-squaredx ≡ ω2/(2ω2

0). The
spring between site numbern andn + 1 has strengthκn. mn is the mass at site numbern.

This recursion relation can be rewritten in terms of standard associated polynomials
with the help of the transfer matrix method. The displacements are then given by (cf [4]
equations (2.8) and (2.10))

qn+1(x) = Sn(x) q1(x) − Ŝn−1(x) q0(x) n ∈ N (1.2)

with arbitrary inputsq1(x), q0(x).* This expression is obtained from the transfer matrixMn(
qn+1

qn

)
= Mn

(
q1

q0

)
Mn := RnRn−1 · · ·R1 (1.3a)

Rn :=
(

Y (n) − kn

1 0

)
Yn(x) := 2

(
1 + kn

2
− ω2

0

ω2
n

x

)
(1.3b)

* We do not consider negative site numbers here. See [4b] for the negativen case.
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and the result

Mn =
(

Sn − Ŝn−1

Sn−1 − Ŝn−2

)
(1.4)

where the polynomialsSn andŜn are defined by the following three-term recurrence relation
corresponding toMn = RnMn−1 with input M1 = R1:

Sn = Yn(x)Sn−1 − knSn−2 S−1 = 0 S0 = 1 (1.5a)

Ŝn = Yn+1(x)Ŝn−1 − kn+1Ŝn−2 Ŝ−1 = 0 Ŝ0 = k1 . (1.5b)

In the case of amono-atomicchain (mn = m) with equal springs (kn = 1) the normalized
eigenfrequencies-squared of a finite chain withN atoms and fixed boundary conditions
(q0 = 0 = qN+1) are given by the zeros ofSN(x) ≡ SN(2(1 − x)) = UN(1 − x) , where
UN are Chebyshev’s polynomials of the second kind. These zeros are

xk ≡ x
(N)
k = 1 − cos

πk

N + 1
= 2 sin2 πk

2(N + 1)
k = 1, 2, . . . , N . (1.6)

The displacements for thekth mode areqn+1 = Sn(2(1 − xk))q1, for n = 1, 2, . . . , N , with
arbitrary,k-dependent inputq1.

For an infinite mono-atomic chain one finds one frequency-squared band from the
condition |TN(1 − x)| 6 1, whereTN(x) are Chebyshev’s polynomials of the first kind.
The numberN of atoms in the unit cell is irrelevant because due to double zeros of
TN(1− x) + (−1)k+1 for x = ξ

(N−1)
k , k = 1, 2, . . . , N − 1, theN − 1 gaps degenerate. The

x-band is, independently ofN , B = [0, 2]. In this caseSn(x) = Ŝn(x) = Sn(2(1 − x)),
which are orthogonal on the interval [0, 2] with weight function

w(1)(x) = 2

π

√
x(2 − x) . (1.7)

Therefore there is no discrete part of the measure present in this mono-atomic case.
The general formula for the differential spectral density per particle (also called

differential density of states) for an infinite chain with a unit ofN atoms repeated
periodically is determined from the generalized Chebyshev polynomials of the first kind,
TN(x) = 1

2

(
SN(x) − ŜN−2(x)

)
. These are the trace polynomials1

2 tr MN (see equation (2.4)
and cf [4], equation (3.11))

GN(x) = 1

Nπ

(−1)k T ′
N(x)√

1 − (TN(x))2
(1.8)

for x in one of theN bandsBk, k = 1, 2, . . . , N , which are determined by|TN(x)| < 1
and ordered with increasingx. Otherwise the density vanishes.
In the mono-atomic case this becomes

GN(x) = G(x) = 1

π

1√
x(2 − x)

(1.9)

for x ∈ [0, 2], and it is zero otherwise. TheN independence is due to the identities
involving ordinary Chebyshev polynomials: 1− (TN(1− x))2 = x(2− x)(SN−1(2(1− x))2

for x ∈ [0, 2] andN ∈ N, as well as

NSN−1(2(1 − x)) = −T ′
N(1 − x) . (1.10)
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Equation(1.8) is, by accident, the weight function for Chebyshev’sTN(1− x) polynomials
(for N = 0; for otherN the weight is twice this). In the general case the trace polynomials
{Tn(x)} are no longer orthogonal (see [4], p 5402).

Quasiperiodic Fibonacci chains are obtained as special case withkn ≡ 1, ω2
0/ω

2
n = rh(n),

with the mass ratior ≡ m1/m0 and the quasiperiodic binary Fibonacci sequence

h(n) = b(n + 1)/ϕc − bn/ϕc n ∈ N0 . (1.11)

In this case we use for the polynomialsSn and Ŝn the notation{S(r)
n (x)} and{Ŝ(r)

n }.

2. Bloch–Floquet solutions and the measure

In this section we describe the computation of the measure with respect to which the
polynomial system{Sn(x)} defined in (1.5a) is orthogonal, following the general method
valid for theN -periodic case (more generally for the asymptotically periodic case) described
in detail in [6], ch 2. The measure for the associated polynomials{Ŝn(x)} defined in (1.5b)
is obtained in the same way. This method rests on the properties of the Bloch–Floquet
solutions for theN -periodic problem. Directly connected to these solutions is a mapw(x)

of the complex plane which enters the definition of a judiciously chosen complex contour
integral. This integral is evaluated in two different ways (i) and (ii). The result will be
the orthogonality relation and the measure can be read off. First, however, the necessary
information on the Bloch–Floquet solutions will be given.

The starting point is the recursion formula for the monic orthogonal polynomial systems
(indicated by a tilde) which describeN -periodic chains withκn+N = κn andmn+N = mn†,

S̃n(x) = (x − cn) S̃n−1(x) − dn S̃n−2(x) S̃−1 = 0 S̃0 = 1 (2.1a)

with

cn := 1 + kn

2

ω2
n

ω2
0

dn := kn

4

ω2
n

ω2
0

ω2
n−1

ω2
0

. (2.1b)

The first-associated monic polynomials{ ˜̂Sn(x)} satisfy (2.1a) with shifted coefficients

ĉn := cn+1, d̂n := dn+1 and the input˜̂S−1 = 0, and ˜̂S0 = k1.
Orthogonality with positive-definite moment functional is guaranteed for allN ∈ N by

Favard’s theorem, becausedn > 0 and thecn are real.
The relation between the polynomials (1.5) and the monic ones is given by (n > 1)

Sn(x) = (−2)n
n∏

i=1

ω2
0

ω2
i

S̃n(x) Ŝn(x) = (−2)nk1

n+1∏
i=2

ω2
0

ω2
i

˜̂Sn(x) . (2.2)

For the Fibonacci chains withκn ≡ κ one uses theN -periodic binary sequenceh(N)(n)

obtained by repetition of the firstN entries of the quasiperiodic sequence{h(n)} of (1.11).
The original polynomials{S(r)

n (x)} and{Ŝ(r)
n (x)} for quasiperiodic Fibonacci chains, are then

obtained in the limitN → ∞, keeping alwaysn 6 N .

† All quantities depend on the chosen periodN , Eω2 ≡ (ω2
0, ω

2
1, . . . , ω

2
N−1) andEk ≡ (k1, k2, . . . , kN ) with κ0 = κN .

In the sequel this dependence will be suppressed.
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In theN -periodic case the transfer matrixMN of the elementary unit satisfies: DetMN =
κ0/κN = +1. From this andMn+N = MnMN one derives, using(1.4)

Sn+2N(x) = 2 TN(x) Sn+N(x) − Sn(x) (2.3a)

Ŝn+2N−1(x) = 2 TN(x) Ŝn+N−1(x) − Ŝn−1(x) (2.3b)

with the trace polynomials

TN(x) := 1
2 tr MN = 1

2(SN(x) − ŜN−2(x)) . (2.4)

In the Fibonacci casewe use theN -periodic binary sequence{hN(n)} obtained from (1.11)
by takinghN(n) = h(n) for n = 1, 2, . . . , N and defininghN(n+N) = hN(n). In this case
the polynomialsSN , ŜN−2, henceTN , coincide with the corresponding quasiperiodic ones.
(2.3) implies for the general solution for the displacements(1.2)

qn+2N+1(x) = 2 TN(x) qn+N+1(x) − qn+1(x) . (2.5)

The two independent Bloch–Floquet solutions are, for arbitrary inputq0(x) andq1(x),

qn,±(x) := qn+N(x) − λN,±(x) qn(x) (2.6a)

with

λN,±(x) := TN(x) ±
√

(TN(x))2 − 1 (2.6b)

which are the two eigenvalues ofMN . With this definition the periodicity condition (2.5)
yields qn+N,±(x) = λN,∓(x) qn,±(x). λN,∓(x) = exp iβN,∓(x) for x values in any of theN
intervals (bands)Bk , k = 1, 2, . . . , N , defined by†

|TN(x)| 6 1 (2.7)

which is necessary for harmonic vibrations. Therefore,

qn,±(x) = (λN,∓(x))n/Nφn(x) n ∈ N0 (2.8)

with periodic φn+N(x) = φn(x), proving that (2.6a) defines the Bloch–Floquet solutions.
The integrated spectral density (or integrated density of states) is a continuous function given
by appropriate branches of the Bloch–Floquet phaseβN(x) = cos−1 TN(x) for band values
x and constant pieces in theN −1 gaps between the bands. The differential spectral density
(or differential density of states) equation (1.7) follows from this after differentiation.

In order to compute the measure with respect to which the polynomials{Sn(x)} are
orthogonal one considers (see [6]) the following map forx ∈ C:

w(x) = (
λN(x)

)1/N
(2.9)

with the sign of the square-root in (2.6b) chosen such that for realx ∈ Bk, k = 1, . . . , N ,
λN(x) runs along the unit circle from+1 to −1 for odd numbered bands and from−1 to

† From equation (1.5) one findsSn(0) = 1 + κ0
∑n

i=1 1/κi , Ŝn(0) = k1 + κ0
∑n+1

i=2 1/κi . Therefore, in theN -
periodic caseTN(0) = 1 holds for all chains (κ0 = κN ). For the proof of the reality of the zeros ofTN(x) ∓ 1
see [6], lemma 2.2.



4174 W Lang

Figure 1. A sketch of the bands and gaps for the FibonacciN = 5, r = 2 chain(AABAAB)∞.
A closed path in thex-plane is indicated.

+1 for even numbered ones. This requires the sign(−1)k+1 for x ∈ Bk. λN(x) is real forx
in the gapsGk, k = 1, . . . , N − 1, and we choose the sign of the square-root as(−1)k such
that |λN(x)| > 1 holds. x ∈ (xmax, ∞), with the maximal band valuexmax, is taken as gap
GN with the sign choice(−1)N . Such a sign choice produces forω(x) of (2.9) a path like
the one shown for the Fibonacci chain exampleN = 5, r = 2 in figure 2, if x runs along
the real axis from 0 toxmax. Finally, in thez = 1/w(x) plane a closed contour is obtained
if x runs also backwards fromxmax to x = 0. This contour is shown for the example in
figure 3. The starting point is atz = +1. In figures 2 (resp. 3) theB

′
k (resp. B

′′
k ) andG

′
k

(resp.G
′′
k) labels indicate the images of the bandsBk and gapsGk under the mapw(x) of

(2.9) (resp.z = 1/w(x)). That the mapw is of importance is clear from the Bloch–Floquet
solution (2.8).

For the computation of the measure for the polynomials{Sn(x)} it was found in [6] that
one should consider thez-plane contour integral form, n = 0, 1, 2, . . . ,

I ≡ Im,n := − 1

2π i

∫
0

Sm(g(z)) qn+1,±(g(z))

SN−1(g(z))
g′(z) dz (2.11)

with g the inverse map toz(x) = 1/w(x), namelyx = g(z) and the Bloch–Floquet solution
qn+1,±(x) defined by (2.6a) and (1.2) with the choiceq1 = 1 and q0 = 0. The sign is
chosen as described above in the definition ofw(x). In addition, forxmax < x 6 +∞ the
sign choice is(−)N . The contour0 (with negative orientation) is the union0 = 0B

′′ ∪0G
′′

with

0B
′′ := {

z | z = exp iθ, θ 6= ± π

N
k, k = 1, 2, . . . , N − 1

}
(2.12)

and 0G
′′ are the 2(N − 1) closed curves around the imagesG

′′
k of the gapsGk. For the

Fibonacci chain example withN = 5, r = 2 see figures 1 and 3.
For later use note that becauseqn+1,±(x) satisfies the same recursion relation asSn(x)

one finds, after comparison of then = −1 and n = 0 inputs on both sides (remember
q0 = 0)

qn+1,±(xi)/q1,±(xi) = Sn(xi) (2.13)
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Figure 2. The mapw(x) of the bands and gaps in theN = 5, r = 2 Fibonacci case.

Figure 3. The mapz(x) = 1/w(x) in the N = 5, r = 2 Fibonacci case. The contour0 is
indicated.

with the zerosxi , i = 1, 2, . . . , N − 1, of SN−1. The contour integral is computed in two
ways (i) adding the0B

′′ and 0G
′′ contribution, both transformed to thex-plane, and (ii)

evaluating thez-plane contour integral with the help of the residue theorem.
In the first stepof (i) one computes the0B ′′ contribution using, forx ∈ Bk with sign

choice(−1)k+1,

qn+1,±(x) = qn+1,∓(x) + (1/λN,±(x) − λN,±(x)) Sn(x) (2.14)

following from (2.6a), and with the choiceq1 = 1, q0 = 0 in (1.2) one hasqn+1 = Sn.
After some rewriting one finds (see appendix A1 for details)

IB = − 1

2π i

∫
0

B
′′
−

(1/λN(x) − λN(x)) Sm(x)Sn(x)

SN−1(x)
g′(z) dz (2.15)

with x = g(z) andB ′′
− denoting the lower half of the punctured unit circle in thez-plane.

This can be restated in thex-plane (see figure 1 for the Fibonacci caseN = 5, r = 2):

IB = 1

π

∫
B

Sm(x) Sn(x)(−1)k+1
√

1 − (TN(x))2

SN−1(x)
dx . (2.16)

The second step of the computation (i) is that along0G′′ . This integral is again evaluated
in x-space, such that theN − 1 (positively oriented) closed contours around the gapsGk
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are picked up (cf figure 1 for theN = 5, r = 2 Fibonacci case).SN−1(x) has a simple
zero in each of theN − 1 gaps. This follows from orthogonality and a lemma (Geronimus
et al lemma 2.2, p 46 in [6]) about the interlacing of the zeros ofTN ∓ 1, which are real,
and SN−1 (and ŜN−1). Note, thatSN−1 zeros may occur at one of the band boundaries,
coinciding then with zeros ofTN − 1 or TN = 1. The residue theorem now yields with the
help of (2.13)

IG = −
∫

dx

( N−1∑
k=1

δ(x − xk)
q1,(−)k (x)

S ′
N−1(x)

)
Sm(x) Sn(x) (2.17)

with the zerosxk ≡ ξ
(N−1)
k of SN−1.

Computation (ii) of (2.11) is done in thez-plane using the residue theorem. The only
possible pole inside0, coming fromg′(z), occurs forx → ∞, i.e. z = 0. The zeros of
SN−1 are outside of0. Therefore only the large-x behaviour of the integrand is of interest.

For largex the S-polynomials behave like (see equation (2.2))

Sm(x) ∼ (−2)m
m∏

i=1

ω2
0

ω2
i

xm . (2.18)

The asymptotics ofqn+1,(−)N (x) cannot be found from its definition (2.6a) directly.
Following [6], it is found from the formula, based on (2.6a) and (2.5)

qn+1,+(x) qn+1,−(x) = (qn+1+N(x))2 − qn+2N+1(x) qn+1(x) . (2.19)

The right-hand side can be rewritten, using themth associatedpolynomialsS(m)
n defined by

S(m)
n (x) = Yn+m(x) S(m)

n−1(x) − kn+m S(m)

n−2(x) (2.20)

with inputs S(m)

−1 = 0 andS(m)

0 = ∏m
i=1 ki for m ∈ N and S(0)

0 = S0 = 1. BecauseS(m)
n−m

satisfies the recursion relation ofqn+1, with the two independent solutionsqn+1 andqn+1+N ,
with Wronskianqn+1 qn+N − qn+1+N qn satisfying

W(qn+1, qn+1+N)/

n∏
i=1

ki = W(q1, qN+1) = q1qN − q0qN+1 (2.21)

one finds (for generalq1 andq0)

S(m)
n−m(x) = 1

W(q1, qN+1)

{
qm+N(x) qn+1(x) − qm(x) qn+1+N(x)

}
. (2.22)

Letting n → n + N andm → n + 1 , one obtains the right-hand side of (2.19):

qn+1,+(x) qn+1,−(x) = W(q1, qN+1) S(n+1)

N−1 (x) . (2.23)

The asymptotic form ofqn+1,(−)N can now be inferred from the one ofqn+1,−(−)N which
follows without difficulty from (2.6a)†. For q1 = 1, q0 = 0 one finds that the leading term
for largex is

qn+1,(−)N (x)

SN−1(x)
∼

n+1∏
j=1

kj

/(
(−2)n+1

n+1∏
i=1

ω2
0

ω2
i

xn+1

)
. (2.24)

† The leading coefficient ofS(n+1)
N−1 (x) is, for n ∈ N0, (−2)N−1 ∏n+1

j=1 kj
∏n+N

i=n+2 ω2
0/ω

2
i .
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The residue theorem can now be applied to the contour integral (2.11) in thez-plane.
g′(z) ∼ −C/z2 for small z due tog(z) = x and z = 1/w(x) ∼ C/x for large x. The
capacityC drops out in the calculation of the residue forz = 0. The result is

Im,n = +1

2

ω2
n+1

ω2
0

n+1∏
j=1

kj δn,m . (2.25)

Combining both ways of calculation (i) and (ii) one ends up with the normalized measure
dσ for the orthonormal polynomials withs0 = 1

sn(x) := (−1)n

√√√√ ω2
1

ω2
n+1

k1∏n+1
j=1 kj

Sn(x) (2.26)

where the factor(−1)n has been inserted to guarantee positive leading coefficient.∫
sm(x) sn(x) dσ(x) = δm,n m, n ∈ N0 (2.27)

where

dσ(x) = w(x) dx −
N−1∑
k=1

δ(x − ξ
(N−1)
k )

2

k1

ω2
0

ω2
1

q1,(−)k (x)

S ′
N−1(x)

dx (2.28a)

w(x) = 1

π

2

k1

ω2
0

ω2
1

(−1)k+1
√

1 − (TN(x))2

SN−1(x)
x ∈ Bk k = 1, 2, . . . , N (2.28b)

q1,(−)k (x) = SN(x) − λN,(−)k (x) k = 1, 2, . . . , N − 1 (2.28c)

λN,(−)k (x) = TN(x) + (−1)k
√

(TN(x))2 − 1 x ∈ Gk . (2.28d)

The absolutely continuous part of the measure,w(x) dx, vanishes outside theN bands
B = ∪Bk. It is non-negative because the sign ofSN−1 in bandBk is (−1)k+1, due to the
fact thatSN−1(0) > +2 and the interlacing property of its zeros with the one ofTN ∓ 1.
The Dirac-measure lives on theN −1 zerosξ (N−1)

k of SN−1. The fact that also this measure
is non-negative will be discussed in section 4.

A similar computation can be performed in order to find the measure for the associated
orthogonal polynomial system{Ŝn} of (2.2b). One puts in (2.1)q1 = 0 andq0 = −1. In the
integral (2.11) one useŝS instead ofS and replacesqn+1,± by qn+2,± := Ŝn+N − λN,± Ŝn.
In place of (2.13) one uses hereqn+2,±(x̂i)/q2,±(x̂i) = Ŝn(x̂i)/k1 with the zerosx̂i of ŜN−1.
The normalized measure for the orthonormal polynomials with positive leading coefficient
and ŝ0 = 1

ŝn(x) = (−1)n
1

k1

√√√√ ω2
2

ω2
n+2

k1k2∏n+2
j=1 kj

Ŝn(x) (2.29)

is then

dσ̂ (x) = ŵ(x) dx −
N−1∑
k=1

δ(x − ξ̂
(N−1)
k ) 2

ω2
0

ω2
2

k1

k2

q2,(−)k (x)/k1

Ŝ ′
N−1(x)

dx (2.30a)

ŵ(x) = 2

π

ω2
0

ω2
2

k1

k2

(−1)k+1
√

1 − (TN(x))2

ŜN−1(x)
x ∈ Bk k = 1, 2, . . . , N (2.30b)

q2,(−)k (x) = ŜN(x) − k1 λN,(−)k (x) x ∈ Gk k = 1, 2, . . . , N − 1 (2.30c)

whereλN,(−)k is given in (2.28d) and ξ̂
(N−1)
k are the zeros of̂SN−1(x).
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3. Continued fraction, Stieltjes inversion formula and the measure

The second method to compute the measure for orthogonal polynomials with periodic
recursion formula coefficients relies on the fact that the continued fraction accompanying
this recursion formula is the Stieltjes transform [8] of the orthogonality measure [1b, 9]. In
the periodic case the continued fraction can be given explicitly, and the measure is then
determined with the help of the Perron–Stieltjes inversion formula [10, 11].

The continued fraction which belongs to the recursion formulae for the (not necessarily
N -periodic) associated orthogonal polynomials{Sn(x)} and {Ŝn(x)} (see equations (1.5a)
and (1.5b)) is

− k1ω
2
1

2ω2
0

χ(x) = k1 |
| Y1(x)

− k2 |
| Y2(x)

− · · · − kn |
| Yn(x)

− · · · (3.1)

where Yn(x)) is given by (1.3b). The factor−k1ω
2
1/2ω2

0 has been introduced for later
convenience. Thenth approximation to this continued fraction is forn > 1†

− k1ω
2
1

2ω2
0

χn(x) = k1 |
| Y1(x)

− k2 |
| Y2(x)

− · · · − kn |
| Yn(x)

= Ŝn−1(x)

Sn(x)
(3.2)

which follows by induction, using the recursion formulae. If the continued fraction
convergesχ(x) := limn→∞ χn(x). A fundamental theorem (see e.g. [9], theorem 2.4, or [1b],
p 90) states thatχ(x) is the Stieltjes transform of the measure

χ(x) =
∫ +∞

−∞

dσ(t)

x − t
x 6∈ supp(dσ) . (3.3)

Here dσ is the real, positive and normalized measure for the orthogonalS-polynomials
(1.5a) (cf [9], equations (2.1)–(2.5))

∫
Sn(x) Sm(x) dσ(x) = ω2

n+1

ω2
1k1

n+1∏
j=1

kj δn,m = m1

mn+1
δn,m m, n ∈ N0 . (3.4)

The Perron–Stieltjes inversion formula (see e.g. [9, 10]) for a real measure of bounded
variation is

σ(t2) − σ(t1) = − 1

π
lim

η→+0

∫ t2

t1

Im χ(t + iη) dt (3.5)

with σ(tk) := 1
2(σ (tk + 0) + σ(tk − 0)) for k = 1, 2. χ̄(x) = χ(x̄) for x ∈ C and χ is

analytic for non-realx.

† The nth approximation to the continued J-fraction is forn > 1 (see equations (2.1) and (2.2))

k1 |
|x − c1

− d2 |
|x − c2

− · · · − dn |
|x − cn

= χn(x) =
˜̂Sn−1(x)

S̃n(x)
.
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In the N -periodic caseχ(x) can be calculated explicitly as follows (cf [7]). Consider,
for fixed x, N and parameterskn, ω2

n, the map in the complexz-plane

JN(x; z) ≡ z′ = k1 |
| Y1(x)

− k2 |
| Y2(x)

− · · · − kN |
| YN(x) − z

(3.6)

with Yn(x) given in (1.3b). By induction, with the help of the recursion formulae, one finds

JN(x; z) = ŜN−2(x) z − ŜN−1(x)

SN−1(x) z − SN(x)
(3.7)

which is for realx a SL(2, R) Möbius transformation due to

1 = Det MN(x) = −SN(x) ŜN−2(x) + SN−1(x) ŜN−1(x) . (3.8)

Because ofN -periodicity −k1ω
2
1χ(x)/2ω2

0 is a fixed point of the map (3.6), and can be
computed from (3.7) as

− k1ω
2
1

2ω2
0

χN,±(x) = {
1
2(SN(x) + ŜN−2(x)) ∓

√
(TN(x))2 − 1

}
/SN−1(x) (3.9)

where (3.8) was used, andTN(x) is given in (2.4). For|TN(x)| < 1, which determinesN
bandsBk, k = 1, 2, . . . , N , χN,±(x) becomes complex. For the gaps between theN bands,
Gk, k = 1, 2, . . . , N − 1, it is real. See figure 1 for the Fibonacci caseN = 5, r = 2.
IntroducingλN,±(x) given in (2.6b), this is rewritten as

− k1ω
2
1

2ω2
0

χN,±(x) = {
SN(x) − λN,±(x)

}
/SN−1(x) . (3.10)

χN,(−)N (x) is for largex proportional to 1/x†. The sign choice forx values in the bands
and gaps will be given below.

The measure can now be determined from the inversion formula (3.5). The absolutely
continuous part of the spectral measure, dσac(x) = w(x) dx, is found from

w(x) = d

dx
σac(x) = − 1

π
lim

η→+0
Im χ(x + iη) < ∞ . (3.11)

χ(x) ≡ χN(x) has to be defined such thatχ̄(x) = χ(x̄) holds for complexx. This
single-valued function is calledχ(x). w(x) lives therefore on the bandsBk and coincides
with (2.28b), after the sign of the square-root (i.e. of the Riemann sheet) has been chosen
such thatw(x) is non-negative. See section 4 for the proof that the sign choice in (2.28b)
leads to positivew.

The discrete part of the spectral measure (sum of Diracδ-functions) originates from the
simple poles ofχ(x) with their residues determining the height of the jumps of the measure

dσDirac(x) = − 2

k1

ω2
0

ω2
1

N−1∑
k=1

δ(x − ξ
(N−1)
k )

SN(x) − λN(x)

S ′
N−1(x)

dx (3.12)

† The x-asymptotics cannot be found from (3.10). One uses(SN − λN,(−)N )/SN−1 = ŜN−1/(SN − λN,(−)N+1)

which is identity (2.23) withq0 = 0, q1 = 1, equations (2.6a) and (1.2).
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where the sign of the square-root inλN(x) of (2.6b) has been chosen as(−1)k for x ∈ Gk,
like in the calculation leading to (2.28c). This choice will be seen in the next section to
produce positive jumps inσ(x) at the zerosξ (N−1)

k of SN−1. For finite N and parameters
{kn}, {ω2

n} there are no other singularities ofχ(x) which could contribute to the singular
part of the measure (cf [12], ch XIII, p 140).

The measure for the orthogonal{Ŝn(x)} polynomials can be calculated in a similar
fashion by taking into account also their first associated polynomials{S(2)

n (x)}, defined
in (2.20). Note that because of the cyclic property of the trace andN -periodicity one has

T̂N(x) := (ŜN(x) − S(2)

N−2(x))/2 = 1
2 tr M̂N = k1TN(x) (3.13)

with M̂N := RN+1RN · · ·R2. More details are found in appendix A.2.
We have thus reproduced the results of the previous section.

4. General remarks and Fibonacci chain examples

We first state a simple conclusion concerning the discrete measure (3.12), which will show
its non-negativity. With the mentioned sign choice the numerator of thekth term can be
rewritten, with (2.6b), (2.4), and (3.8), like

SN − λN = 1
2

(
SN + ŜN−2

) + (−1)k+1
√(

1
2(SN + ŜN−2)

)2 − SN−1ŜN−1 . (4.1)

Evaluated at the zeroxk ≡ ξ
(N−1)
k of SN−1 this becomes

(SN − λN)|xk
=

{
2

(−(SN + ŜN−2)|xk

)
(SN + ŜN−2)|xk

for k even

2
(
(SN + ŜN−2)|xk

)
(SN + ŜN−2)|xk

for k odd
(4.2)

with the step function2(x). Due to (3.8)(SN + ŜN−2)|xk
=
(
(SN(xk))

2 − 1
)
/SN(xk). The

final result for the discrete measure is

dσ
(N,r)

Dirac (x) = 2

k1

ω2
0

ω2
1

N−1∑
k=1

δ(x − ξ
(N−1)
k ) 2

(
(−)k+1(SN(x) + ŜN−2(x))

)SN(x) + ŜN−2(x)

−S ′
N−1

dx

(4.3)

which is always non-negative because the signum ofS ′
N−1(ξ

(N−1)
k ) is (−1)k.

Two remarks are in order.
(i) There will be no contribution to the discrete measure from those zeros ofSN−1

which satisfy TN(ξ
(N−1)
k ) = ±1. In this event the zero ofSN−1 coincides with one of

the band boundaries, and from the definition ofTN and (3.8) one findsSN(ξ
(N−1)
k )=

−ŜN−2(ξ
(N−1)
k ) = ±1.

(ii) A comment on band degeneracy. A gapGk will disappear wheneverTN + (−1)k+1

has a double zero at, say,xk. Because the zeroξ (N−1)
k of SN−1 lies in the gap or

on one of the adjacent band boundaries one hasxk = ξ
(N−1)
k . For the same reason the

kth zero of ŜN−1 is then alsoxk. Due to (3.8)ŜN−2(xk) = −1/SN(xk), and therefore
SN(xk) + 1/SN(xk) = 2(−1)k (definition ofTN ). ThusSN(xk) = (−1)k = −ŜN−2(xk), and
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there will be no contribution to the discrete part (4.3) of the measure from such disappearing
gapsGk†.

Next, we consider some examples of Fibonacci chains.
In theN -periodic Fibonacci casekn ≡ 1 andYn(x) = 2(1−rhN (n)x), with theN -periodic

binary sequence{hN(n)} obtained by continuing the firstN entries of{h(n)} given by (1.11)
periodically. All polynomials will now depend onN and the mass ratior ≡ m1/m0. We
shall use non-script symbols for these polynomials and theN, r labels will be clear from
the context.

(a) First we check themono-atomic caser = 1. The results have already been given in
the introduction. Remark (ii) applies for allN − 1 disappearing gaps.

(b) PutN = 2, r ≡ mA/mB 6= 1, i.e. AB-chains. We first show that there is no discrete
part (4.3) of the measure. Here remark (i) applies. The zero ofS1(x)= 2(1− rx) (see [4a])
is x1 = 1/r, and because

T2(x) = 2rx2 − 2(1 + r)x + 1 S2(x) = 4rx2 − 4(1 + r)x + 3 (4.4)

one hasS2(1/r) = T2(1/r)=−1=−Ŝ0‡. The weight function is given by

w(x) = 2r

π

√
−x

(
x − 1

r

)
(x − 1)

(
x − 1 − 1

r

)/∣∣∣∣x − 1

r

∣∣∣∣ (4.5)

for x in any of the two bands

r > 1 : B1 =
[

0,
1

r

]
B2 =

[
1, 1 + 1

r

]
(4.6a)

r 6 1 : B1 = [0, 1] B2 =
[

1

r
, 1 + 1

r

]
. (4.6b)

The weight function (2.30) for the associated polynomials{Ŝn(x)} is found to be

ŵ = 1

r

|x − 1/r|
|x − 1| w(x) (4.7)

for x in the bands (4.6) and zero otherwise.
(c) PutN = 3, r ≡ mA/mB 6= 1, i.e. infiniteABA-chains. Now the discrete measure

is present because zeros ofS2 satisfy 2rx∓ = 1 + r ∓
√

(r − 1)2 + r andS3(x∓)+Ŝ1(x∓)=
2(r − 1)x∓ 6= 0. Therefore

dσDirac = 4r√
(r − 1)2 + r

{
(r − 1) x− δ(x − x−) dx for r > 1

(1 − r) x+ δ(x − x+) dx for 0 < r < 1 .
(4.8)

The bands are, depending on sign(1 − r),

r > 1: B1 =
[

0,
1

2r

]
B2 =

[
1

2r
b−(r),

3

2r

]
B3 =

[
2r + 1

2r
,

1

2r
b+(r)

]
(4.9a)

r 6 1: B1 =
[

0,
1

2r
b−(r)

]
B2 =

[
1

2r
,

2r + 1

2r

]
B3 =

[
3

2r
,

1

2r
b+(r)

]
(4.9b)

† In the N -periodic Fibonacci case an example is N=6 ((ABA)2 chains) where one finds double zeros ofT6 + 1
at the zeros ofT3 for k = 1, 3, 5.

‡ This is an example where a zero ofSN−1 coincides with a band boundary without having band degeneracy (no
double zero ofTN ∓ 1). It seems to be a counterexample to one part of the statement found in [6], lemma 2.2,
top of p 47 (the ‘if’ part).
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with b±(r) ≡ r + 3
2 ±

√
r2 − r + 9

4.

The weight function (2.28b) becomes forx ∈ Bk , k = 1, 2, 3,

w(x) = 2

π
r2

×
√−x(x − (2r + 1/2r))(x − (3/2r))(x − (1/2r))(x − (1/2r)b+(r))(x − (1/2r)b+(r))

(−1)k+1(x − (1/2r)d−(r))(x − (1/2r)d+(r))

(4.10)

with d±(r) ≡ 1 + r ± √
r2 − r + 1.

(d) Put N = 4, r ≡ mA/mB 6= 1, i.e. ABAA-chains. There is no contribution to
the discrete measure because one finds (see [4a]) for the zeros ofS3, viz x1 = 1/r,
2rx± = 1 + r ± √

r2 + 1, S4(xk)+Ŝ2(xk)=0 for k = 1, ±. Like in the N = 3 case one
can give the bands and the weight function explicitly.

5. Green’s functions and the measure†

The purpose of this section is twofold: (i) to define the Green’s functions of the general
N -periodic problem which satisfy specific boundary conditions appropriate to the use of the
Bloch–Floquet solutions encountered in section 2. (ii) To find the orthogonality measures
computed in this work from these Green’s functions. We shall also give the relation of
the differential spectral density (or differential density of states) equation (1.8) to theses
Green’s functions which turns out to be the standard one. This should clarify the difference
between the absolutely continuous part of the measure and the spectral density.

The Green’s functionsGn,m(x) for the N -periodic problem are defined forn, m ∈ N0

by‡

Yn+1(x) Gn,m(x) − Gn+1,m(x) − kn+1 Gn−1,m(x) = δn,m . (5.1)

The Y -coefficient is defined in (1.3b). The inputs areG−1,m(x) andG0,m(x). The Green’s
functions with the proper boundary conditions turn out to be the ones constructed from the
Bloch–Floquet solutions (2.6). This solution is of the type

Gn,m(x) = am(x) qmax(n,m)+1,(−1)k (x) qmin(n,m)+1,(−1)k+1(x) . (5.2)

The sign choice pertains to gapGk, for which qn+1,(−1)k → 0 for x ∈ Gk andn → ∞ (see
equation (2.8)). The coefficientam is found from (5.1) puttingn = m and using the recursion
formula for theqn,±. For general inputq1 andq0 one finds with the Wronskian (2.21)

m+1∏
i=1

kiGn,m(x) = 1

W(q1, qN+1) (λN,(−1)k (x) − λN,(−1)k+1(x))

× qmax(n,m)+1,(−1)k (x) qmin(n,m)+1,(−1)k+1(x) . (5.3)

† This section is inspired by a paragraph found in [7] for periodic problems.

‡ The dependence onN, {kn}, {ω2
n} is suppressed. For the monic polynomials (2.1) one uses(x − cn+1) G̃n,m(x)−

dn+1 G̃n−1,m(x) − G̃n+1,m(x) = δn,m. The relation(
∏n

i=1
ω2

0
ω2

i

) G̃n,m = (−2)m−n+1(
∏m+1

i=1
ω2

0
ω2

i

) Gn,m holds.
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This is the Bloch–Floquet Green’s function vanishing forx-values in gaps forn → ∞ with
fixed m andvice versa.

Our interest is in the diagonal Green’s functionsGn,n(x) which are in factq0 and q1

independent. This is due to identity (2.23) which shows that the Wronskian drops out. The
final result can be written in terms of themth associated polynomials{S(m)

n (x)} defined in
(2.20) like (n+1∏

i=1

ki

)
Gn,n(x) = S(n+1)

N−1 (x)/
(

2
√(

TN(x)
)2 − 1

)
. (5.4)

The sign of the square root depends on the gap and band number. For thekth gap,Gk, it is
(−1)k, for thekth band,Bk it is (−1)k+1 in accordance with the remarks found in section 2.
In particular, one has for the input quantities

G−1,−1(x) = 1

2
SN−1(x)/

√(
TN(x)

)2 − 1 (5.5a)

G0,0(x) = 1

2k1
ŜN−1(x)/

√(
TN(x)

)2 − 1 . (5.5b)

The imaginary part of these input Green’s functions are inversely related to the weight
functions computed in this paper. Forx ∈ Bk, k = 1, 2, . . . , N , one finds

Im G−1,−1(x) := lim
η→0+

Im G−1,−1(x + iη) = 1
2(−1)kSN−1(x)/

√
1 − (

TN(x)
)2

. (5.6)

In the gaps the imaginary part is zero. This shows that the absolutely continuous part of the
{Sn(x)} measure (the weight function), which lives on the bands, is essentially the negative
inverse of the imaginary part of theG−1,−1 Green’s function.

− Im G−1,−1(x) = ω2
0/(πω2

1w(x)) (5.7)

with (2.28b) andx in the bands. Similarly

− Im G0,0(x) = ω2
0/(πω2

2k2ŵ(x)) (5.8)

with (2.30b). The average over the elementaryN -unit of the chain for the diagonal
Green’s functionsG̃n,n(x), belonging to the monic polynomials{S̃n(x)}, can be computed
with the help of the Christoffel–Darboux identities for the Bloch–Floquet solutions (2.6).
These identities follow from the recursion formula (cf [1]), and they are (remember that
k1k2 . . . kN = 1 in theN -periodic case)

− 2
N−1∑
n=0

ω2
0

ω2
n+1

∏n+1
i=1 ki

qn+1,+(x) qn+1,−(x)

= qN,+(x) q ′
N+1,−(x) − qN+1,+(x) q ′

N,−(x) + q1,+(x) q ′
0,−(x) − q0,+(x) q ′

1,−(x) .

(5.9)

There is an alternative version of this identity where the derivative acts on the left factor
and an overall minus sign appears. This happens because the confluent Christoffel–Darboux
identity implies

qN,+(x) qN,−(x) − qN,+(x) qN+1,−(x) − q1,+(x) q0,−(x) + q0,+(x) q1,−(x) ≡ 0 (5.10)
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which is in fact the Wronskian identity analogous to (2.21) forW(qN+1,+, qN+1,−). The
connection betweeñGn,n(x), for the monic case, andGn,n(x) is

G̃n,n(x) = −2
ω2

0

ω2
n+1

Gn,n(x) . (5.11)

Using equations (5.4) and (2.23) for the(n + 1)th associated polynomials, identity (5.9),
and the definitions (2.6) with (1.2), a lengthy calculation shows that for general inputsq0(x)

andq1(x)

N−1∑
n=0

G̃n,n(x) = T ′
N (x)/

√(
TN(x)

)2 − 1 (5.12)

with the sign convention for gaps and bands mentioned earlier. Therefore, the imaginary
part produces the differential spectral density (or differential density of states) known from
the differentiation of the Bloch–Floquet phase:

1

π
lim

η→0+
Im

1

N

N−1∑
n=0

G̃n,n(x + iη) = GN(x) (5.13)

given by (1.8) forx values in the bands and zero otherwise. This result corroborates the
choice of the Bloch–Floquet Green’s functions. As a by-product we find from (5.12), (5.11)
and (5.4) the identity

N−1∑
n=0

ω2
0

ω2
n+1

∏n+1
i=1 ki

S(n+1)

N−1 (x) = −T ′
N (x) (5.14)

for theN -periodic case of the general associated polynomials (2.20) which collapses to the
well known identity (1.10) for Chebyshev polynomials for the mono-atomic case.
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Appendix

A.1. Derivation of equation (2.14) (cf [6])

In the z-plane IB is given by (2.11) with0 = 0B ′′ defined by (2.12). The sign choice
of qn+1,± depends on the bandBk, k = 1, 2, . . . , N , where it is (−1)k+1. q0 = 0 and
q1 = 1 in (2.6a) with (1.2). The relation (2.14) with the appropriate sign choice for
λN(x) = λN,(−1)k+1(x) is used in order to rewriteqn+1,± of (2.11). The piece withqn+1,∓
is, after a change of variable, seen to be the negative of the original integralIB with the
relevantqn+1,± choice for x ∈ Bk. The same change of variable is used to rewrite the
second piece coming from (2.14) as twice the integral over only half of the contour, namely
over 0B

′′
−

in the lower half of thez-plane.
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A.2. Continued fractions for the{Ŝn} measure calculation

The {Ŝn(x)} recursion relation is given by (1.5b). Their first associated polynomials are
{S(2)

n (x)} defined by (2.20). The normalized measure dσ̂ obeys∫
Ŝn(x) Ŝm(x) dσ̂ (x) = k1

k2

n+2∏
j=1

kj

ω2
n+2

ω2
2

δn,m = k2
1

m2

mn+2
δn,m m, n ∈ N0 . (A.1)

The continued fraction̂χ(x) which is related to this measure like in (3.3) has approximants

χ̂
n(x) = S̃(2)

n−1(x)

S̃1
n(x)

= − 2ω2
0

k2ω
2
2

(
k2 |

| Y2(x)
− k3 |

| Y3(x)
− · · · − kn+1 |

| Yn+1(x)
− · · ·

)
.

(A.2)

The tilde quantities are monic polynomials.S(1)
n ≡ Ŝn. The corresponding M̈obius

transformation is

ĴN (x; z) ≡ z′ = k2 |
| Y2(x)

− k3 |
| Y3(x)

− · · · − kN+1 |
| YN+1(x) − z

= S(2)

N−2(x) z − S(2)

N−1(x)

ŜN−1(x) z − ŜN(x)
.

(A.3)

The fixed point solution can be written like

− k2ω
2
2

2ω2
0

χ̂
N,±(x) = {

ŜN(x) − k1λN,±(x)
}
/ŜN−1(x) (A.4)

where λ̂N,± := T̂N(x) ±
√

(T̂N)2 − k2
1 = k1λN,± was used which follows from (3.13)

and (2.6b). The measure d̂σ is then computed like in (3.5) from̂χ . With the definition
(2.29) of the{ŝn} polynomials one finds

∫
dσ̂ ŝn(x)ŝm(x) = δn,m with dσ̂ given in (2.30).
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