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Fibonacci chains: the periodic case*

Wolfdieter Lang

Institut fur Theoretische Physik, UniverattKarlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe,
Germany

Received 6 June 1995, in final form 30 January 1996

Abstract. The spectral measure for the two families of orthogonal polynomial systems related
to periodic chains withV-particle elementary unit and nearest-neighbour harmonic interaction
is computed using two different methods. The interest is in the orthogonal polynomials related
to Fibonacci chains in the periodic approximation. The relation of the measure to appropriately
defined Green’s functions is established.

1. Introduction

Two associated families of orthogonal polynomial systems govern longitudinal time-
stationary vibrations of linear chains with nearest-neighbour harmonic interaction
(springsk,, massesn,,).

These polynomials are defined by three-term recurrence relations appropriate for
orthogonal polynomials [1]. In the case of a mono-atomic chain (mg3swith uniform
coupling (strengthe) they are deformations of ChebysheWs(2(1 — x)) = U,(1 — x)
polynomials of the second kind: = w?/2w3, with w3 = «/mo, is a normalized frequency-
squared.

Our interest is in Fibonacci chains which have uniform coupling € «) and two
masses (mass ratio= m1/mg) distributed at site number =1, 2, ... in accordance with
the binary sequence @, 1,1,0,1,0,.... This quasi-periodic sequence is generated by the
Fibonacci substitution rule & 1, 0 and 0— 1. Such chains have been considered as simple
models for special binary alloys [2]. The same structure is encountered in the problem of the
phonon spectrum of a one-dimensional Fibonacci quasicrystal [3]. In this case the associated
orthogonal polynomial systems are denoted{5§’ (x)} and{S"(x)} [4]. Up to now their
spectral measures (or moment functionals) have not been determined. From rigorous results
on the Fibonacci Hamiltonian in the context of the one-dimensionald8aiger equation
one expects that this measure is of the singular continuous type supported by a Cantor set
of zero Lebesgue measure [5].

As an approximation to the quasiperiodic problem we identify in this work the spectral
measure forperiodic Fibonacci chains with an elementary unit consistingNofmasses
following the pattern of the firsW entries of the above given binary sequence. The measures
for general N-periodic orthogonal polynomial systems, (x)} and {3‘,,(x)}, defined by
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three-term recursion relations witti-periodic coefficients, can be found using two different
methods.

The first method employs the Bloch—Floquet solutions for these periodic chains and is
based on the evaluation of a (judiciously chosen) complex contour integral. This is a special
application of a general method available for orthogonal polynomials with asymptotically
periodic coefficients in the recursion relation [6]. For our purpose only the strictly periodic
case is of interest. With this restriction a similar procedure is discussed in [7]sddund
methoduses the fact that the continued fraction associated with orthogonal polynomials
is the Stieltjes transform [8] of the spectral measure [1,9]. For periodic systems this
continued fraction can be determined as fixed-point of a certdihit transformation, and
the measure is then obtained the Perron—Stieltjes inversion formula (see e.g. [8, 10, 11]).

It turns out that the support of the absolutely continuous part of the measure (the weight
function) is, for fixedN-periodic chain parametexs, m,, given by N, in general disjoint,
x-intervals (bands). These are determined from the generalized Chebyshev polynomials of
the first kind7y (x), the so-called trace polynomials, by the conditidi (x)| < 1. These
bands coincide with the support of the spectral density (or density of states) of infinite
chains. The weight function is, however, not given by the density of states. In general, a
discrete point measure (Dird@efunction measure) is also present. Each gap betweenthe
intervals which support the continuous measure may contribute one point (which may lie
on one of the band boundaries).

In the case of Fibonacci chains the limit— oo is supposed to correspond to the chains
based on the quasi-periodic binary Fibonacci sequence. At present this limit is beyond our
control. A

The connection of the absolutely continuous part of$hendS measures to the inverse
of the imaginary part of the diagonal input Green’s functions for the periodic problem is
given in an extra section. The differential spectral density (or differential density of states)
is recovered, as usual, from the imaginary part of the average over the elem¥ntaiy
of the diagonal (or local) Green’s functions.

In order to familiarize the reader with our notation we start with the dynamical equations
for the displacements, (r) = ¢, expliwr) at site numben

1+k, o
n+1 — 2< 2 ng>q'1 +kn gn-1=10 ne’z (1.1)

n

with ? = &, /my, k, = k,—1/k, and the normalized frequency-squaneek w?/(2w3). The
spring between site numberandn + 1 has strengtl,. m, is the mass at site number

This recursion relation can be rewritten in terms of standard associated polynomials
with the help of the transfer matrix method. The displacements are then given by (cf [4]
equations (2.8) and (2.10))

A

Gn+1(x) = Su(x) q1(x) — Sp—1(x) qo(x) neN (12)

with arbitrary inputsg; (x), go(x).* This expression is obtained from the transfer matdx

(‘1"“) = M, <‘h> M, := R,R,_1--- Ry (1.33)
qn q0

_(Y() —k, _ o1tk @
R, = ( 1 0) Y, (x) = 2( 5 w—’%x (1.3v)

* We do not consider negative site numbers here. See [4b] for the negatisse.
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and the result

_ Sn - LSA‘n—l
Mn B (Sn—l - 811—2) (14)

where the polynomials, ands, are defined by the following three-term recurrence relation
corresponding tav,, = R, M,,_1 with input M; = R;:

Sn = Y,l(x)S,,_l — ky,Sn_z 5_1 =0 So =1 (l&)
Si = Y11 — knaSiz S1=0 So=ki. (1.50)

In the case of anono-atomicchain ¢z, = m) with equal springsk, = 1) the normalized
eigenfrequencies-squared of a finite chain wNhatoms and fixed boundary conditions
(go = 0 = gn41) are given by the zeros @y (x) = Sy(2(1 — x)) = Uy(1 — x) , where
Uy are Chebyshev’s polynomials of the second kind. These zeros are
xkzxéN)zl—cos#L:Zsir?z(Nﬂiil) k=1,2,...,N. (1.6)
The displacements for thieh mode arey, 11 = S, (2(1 — xx))q1, forn =1,2, ..., N, with
arbitrary, k-dependent inpug; .

For an infinite mono-atomic chain one finds one frequency-squared band from the
condition |Ty (1 — x)| < 1, whereTy(x) are Chebyshev’s polynomials of the first kind.
The numberN of atoms in the unit cell is irrelevant because due to double zeros of
Tvd—x)+ (D forx =gV P, k=1,2,..., N -1, theN — 1 gaps degenerate. The
x-band is, independently a¥, B = [0, 2]. In this caseS,(x) = Sn(x) = 5,21 — x)),
which are orthogonal on the interval,[B] with weight function

w®(x) = gy/x(Z —Xx). a.7)

Therefore there is no discrete part of the measure present in this mono-atomic case.
The general formula for the differential spectral density per particle (also called
differential density of statgsfor an infinite chain with a unit ofN atoms repeated
periodically is determined from the generalized Chebyshev polynomials of the first kind,
Tn(x) = %(SN(x) —SN_Z(x)). These are the trace polynomi%ssr My (see equation (2.4)
and cf [4], equation (3.11))
k 77
Gy =+ CU IV
N7t /1 — (Ty(x))?
for x in one of theN bandsBy, k = 1,2,..., N, which are determined by7Zy (x)| < 1
and ordered with increasing Otherwise the density vanishes.
In the mono-atomic case this becomes

1 1
GNxX)=G(x) = = ————
N () (x) PN
for x € [0,2], and it is zero otherwise. Th#& independence is due to the identities
involving ordinary Chebyshev polynomials:—1(Ty (1 — x))? = x(2 — x)(Sy_1(2(1 — x))?
for x € [0,2] andN € N, as well as

(1.8)

(1.9)

NSy_12(1—x)) = —T,(1—x). (1.10)
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Equation(1.8) is, by accident, the weight function for Chebyshe¥;s(1 — x) polynomials
(for N = 0; for otherN the weight is twice this). In the general case the trace polynomials
{7, (x)} are no longer orthogonal (see [4], p 5402).
Quasiperiodic Fibonacci chains are obtained as special caséwithl, w3/w? = r"™,
with the mass ratie = m1/m( and the quasiperiodic binary Fibonacci sequence

h(n) = [(n+1)/e] —n/¢] n€No. (1.11)

In this case we use for the polynomiafs andS, the notation{S" (x)} and {S®}.

2. Bloch—Floquet solutions and the measure

In this section we describe the computation of the measure with respect to which the
polynomial system{S,(x)} defined in (1.8) is orthogonal, following the general method
valid for the N-periodic case (more generally for the asymptotically periodic case) described
in detail in [6], ch 2. The measure for the associated polynonilér)} defined in (1.5)
is obtained in the same way. This method rests on the properties of the Bloch—Floquet
solutions for theN-periodic problem. Directly connected to these solutions is a mép
of the complex plane which enters the definition of a judiciously chosen complex contour
integral. This integral is evaluated in two different ways (i) and (ii). The result will be
the orthogonality relation and the measure can be read off. First, however, the necessary
information on the Bloch—Floquet solutions will be given.

The starting point is the recursion formula for the monic orthogonal polynomial systems
(indicated by a tilde) which describ€-periodic chains withc, .y = x, andm, .y = m,1,

Sn(x) = (x — ) Su1(x) — dy Sy—2(x) S1=0 So=1 (2.19)
with
14k, w? ky @? w?
Ot e R R (2.1)
2 1o 4a)0 wj

The first-associated monic ponno[nialé,,(x)} sa~tisfy (2.1) with shifted coefficients
&y = Cps1, dy = d,.1 and the inputS_; =0, andSy = k;.
Orthogonality with positive-definite moment functional is guaranteed fovadl N by

Favard’'s theorem, becaudg > 0 and thec, are real.
The relation between the polynomials (1.5) and the monic ones is given byl{

n 2 n+l 2 _
S0 =2 T[385w  Sw=c2u[[34w. @2
i=1 " i=2 i

For the Fibonacci chains with, = « one uses theV-periodic binary sequence™’ (n)
obtained by repetition of the firg{ entries of the quasiperiodic sequeriéén)} of (1.11).
The original polynomialgs® (x)} and{S(" (x)} for quasiperiodic Fibonacci chains, are then
obtained in the limitN — oo, keeping always < N.

t All quantities depend on the chosen perigda? = (3,02, ..., @?_p andk = (k, ko, .. ., kn) with kg = k.
In the sequel this dependence will be suppressed.
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In the N-periodic case the transfer matii%,y of the elementary unit satisfies: Dty =
ko/ky = +1. From this andV,, .,y = M, My one derives, usingl.4)

Spron (¥) =2 Ty (x) Spqn(x) — Sp(x) (2.3)
Sppon—1(x) =2 Ty (x) Spyn-1(x) — Sp—1(x) (2.30)

with the trace polynomials
Ty(x) = 3t My = 3(Sn(x) — Sy—2(x)) . (2.4)

In the Fibonacci caseve use theV-periodic binary sequendgé y (n)} obtained from (1.11)
by takingiay(n) = h(n) forn = 1,2, ..., N and definingiy (n + N) = hy(n). In this case
the polynomialsSy, Sy_», henceTy, coincide with the corresponding quasiperiodic ones.
(2.3) implies for the general solution for the displacemet®)

Gnron+1(X) = 2 Ty (X) Gnyn+1(x) — Guya(x) - (2.5)

The two independent Bloch—Floquet solutions are, for arbitrary igplit) and g (x),

Gn£(X) = guan () = Ay, £(X) Gn(x) (2.62)

with

Ay (@) =Ty (x) £/ (Ty(x))* — 1 (2.60)

which are the two eigenvalues #fy. With this definition the periodicity condition (2.5)
yields g, n £ (x) = An 5(x) gn 2 (x). Ay £(x) = expiBy x(x) for x values in any of theV
intervals (bandspB; , k =1,2,..., N, defined by

Ty ()] <1 (2.7)
which is necessary for harmonic vibrations. Therefore,

Gn+(x) = Oy ()" N ep, (x) n € No (2.8)

with periodic ¢, 1y (x) = ¢,(x), proving that (2.4) defines the Bloch—Floquet solutions.
The integrated spectral density (or integrated density of states) is a continuous function given
by appropriate branches of the Bloch—Floquet ph&isex) = cos* 7y (x) for band values
x and constant pieces in thé— 1 gaps between the bands. The differential spectral density
(or differential density of states) equation (1.7) follows from this after differentiation.

In order to compute the measure with respect to which the polynorffgls)} are
orthogonal one considers (see [6]) the following mapifar C:

wx) = (v )" (2.9)

with the sign of the square-root in (B)pchosen such that for reale By, k =1,..., N,
Ay (x) runs along the unit circle from-1 to —1 for odd numbered bands and froal to

T From equation (1.5) one findS,(0) = 1+ o i 1/ki, 8,(0) = k1 + ko Zf’:zl 1/k;. Therefore, in theN-
periodic caseZy (0) = 1 holds for all chains«p = xy). For the proof of the reality of the zeros @ (x) £ 1
see [6], lemma 2.2.
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Figure 1. A sketch of the bands and gaps for the Fibona¢ck 5, r = 2 chain(AABAAB)™.
A closed path in ther-plane is indicated.

+1 for even numbered ones. This requires the gigh)“** for x € B;. Ay (x) is real forx

in the gapsGy, k =1, ..., N — 1, and we choose the sign of the square-roat-ab* such
that |Ax(x)| > 1 holds. x € (xmax 00), With the maximal band valuen,y, is taken as gap
Gy with the sign choicg—1)". Such a sign choice produces forx) of (2.9) a path like
the one shown for the Fibonacci chain example= 5, » = 2 in figure 2, ifx runs along
the real axis from 0 tamax. Finally, in thez = 1/w(x) plane a closed contour is obtained
if x runs also backwards fromn,x to x = 0. This contour is shown for the example in
figure 3. The starting point is at= +1. In figures 2 (resp. 3) th&, (resp. B,) and G,
(resp.G,) labels indicate the images of the barBisand gapsG, under the mapw(x) of
(2.9) (respz = 1/w(x)). That the mapw is of importance is clear from the Bloch—Floquet
solution (2.8).

For the computation of the measure for the polynom{&}gx)} it was found in [6] that
one should consider theplane contour integral fan,n =0, 1, 2, ...,

1 [ 8n(8() qurrs(e@) ,
I=1,, =———: i d 2.11
’ 2 fr Swag)y SWE @11

with g the inverse map te(x) = 1/w(x), namelyx = g(z) and the Bloch—Floquet solution
gn+1.+(x) defined by (2.6) and (1.2) with the choicg; = 1 andgo = 0. The sign is
chosen as described above in the definitionvgf). In addition, forxmax < x < +oo the

sign choice ig—)". The contourl” (with negative orientation) is the unidh = 'y UT 5
with

Ty :={z|z=expi9,0;é:|:%k,k=1,2,...,N—1} (2.12)

andTI';» are the 2N — 1) closed curves around the imagéé of the gapsG,. For the
Fibonacci chain example with = 5, » = 2 see figures 1 and 3.
For later use note that becaugg i + (x) satisfies the same recursion relationSaéx)

one finds, after comparison of the= —1 andn = O inputs on both sides (remember
g0 = 0)

%1+1.,i(xi)/ql,i(xi) = Sn (X,‘) (213)
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(2)

(X

wn

Figure 3. The mapz(x) = 1/w(x) in the N = 5,r = 2 Fibonacci case. The contolr is
indicated.

with the zerosy;, i =1,2,..., N — 1, of Sy_;. The contour integral is computed in two
ways (i) adding thep» and T';» contribution, both transformed to theplane, and (ii)
evaluating thez-plane contour integral with the help of the residue theorem.

In the first stepof (i) one computes th& 'z, contribution using, forx € By with sign
choice (—1)F1,

Gni1,+(X) = @uy1,57(0) + /Ay +(x) — Ay +(x)) Su(x) (2.14)

following from (2.6a), and with the choice;; = 1, go = 0 in (1.2) one hagy,+1 = S,.
After some rewriting one finds (see appendix Al for details)

_i/ (1/An(x) — Ay (X)) Spn(x)S,(x)
271 Jr, Sn-1(x)

g'(z)dz (2.15)

Ip =

with x = g(z) and B” denoting the lower half of the punctured unit circle in th@lane.
This can be restated in theplane (see figure 1 for the Fibonacci cage= 5, r = 2):

E/ S (x) Sn(x)(—l)”l\/l—(TN(x))zdx
w Jg Sy-1(x) '

The second step of the computation (i) is that aldhg. This integral is again evaluated
in x-space, such that th&¥% — 1 (positively oriented) closed contours around the g&ps

Iy = (2.16)
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are picked up (cf figure 1 for th& = 5, r = 2 Fibonacci case)Sy_1(x) has a simple
zero in each of th&v — 1 gaps. This follows from orthogonality and a lemma (Geronimus
et al lemma 2.2, p 46 in [6]) about the interlacing of the zeros/pfF 1, which are real,
and Sy_; (and SN,l). Note, thatSy_1 zeros may occur at one of the band boundaries,
coinciding then with zeros of y — 1 or 7y = 1. The residue theorem now yields with the
help of (2.13)

—— [ a (Z S =m0 G ((x))) S0() 8,(x) (217)

with the zerosy, = £ of Sy_;.

Computation (ii) of (2.11) is done in theplane using the residue theorem. The only
possible pole insidd", coming fromg’(z), occurs forx — oo, i.e. z = 0. The zeros of
Sy_1 are outside of". Therefore only the large-behaviour of the integrand is of interest.

For largex the S-polynomials behave like (see equation (2.2))

m i w% m
Sp(x) ~ (=2) ]‘[;x . (2.18)

i=1

The asymptotics 0fg,;1 v (x) cannot be found from its definition (Zp directly.
Following [6], it is found from the formula, based on (2)6and (2.5)

@1+ () G- (X) = (@ui1en )2 = Guian+1(X) gupr (%) - (2.19)

The right-hand side can be rewritten, using thih associatecpolynomialsS™ defined by
S (x) = Yo (1) 81 () = K Sy (%) (2.20)

with inputs 8™ = 0 andS{™ = [,k for m € N andS” = S, = 1. BecauseS."),
satisfies the recursion relation @f, 1, with the two independent solutiogs,; andg, 1.,
with Wronskiang, 11 ¢,+ny — gn+1+n g Satisfying

W (gni1 gniain)/ | [ o = Wigr, an+1) = q1gv — qogn+a (2.21)
i=1

one finds (for generaj; and gp)
m 1
S = TGN () a1 (X) = gn () guirin ). (2.22)
W(q1, gn+1)
Lettingn — n+ N andm — n + 1, one obtains the right-hand side of (2.19):

Gni1+(X) Guat—(X) = W(g1, gns1) Sy (x) . (2.23)

The asymptotic form of,1 (v can now be inferred from the one @f1 v which
follows without difficulty from (2.&)1. For gy = 1, go = 0 one finds that the leading term
for large x is

dn+1,-)¥ X) )N(x) n+1k 2n+ln+1 0 Kl 224
Sy-1(x) H =2 H 229

l

1 The leading coefficient 05("*1)(;:) is, for n € Ng, (=2)N-1 ]‘["“k [N, w3 /w?.
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The residue theorem can now be applied to the contour integral (2.11) in-phemne.
g'(z) ~ —C/z? for small z due tog(z) = x andz = 1/w(x) ~ C/x for largex. The
capacityC drops out in the calculation of the residue foe= 0. The result is

n+1
Ly = ”+1Hk Sum - (2.25)

Combining both ways of calculatlon (i) and (ii) one ends up with the normalized measure
do for the orthonormal polynomials withsy = 1

2
k1
() = (-1 | S w1 S0 (2.26)
VH-l 1_[] =1 J

where the facto(—1)" has been inserted to guarantee positive leading coefficient.

[0 801d0@ =80, mneng (2.27)
where

& V-1, 2 ©F g1y (x)
do(x) = w(x)dx — Za( —g )) Oﬁ dx (2.2&)
X
k+1 _ 2
w()_li‘ig( U el 11C2) xeB  k=12....N (2.28)
T k1 oh Sy_1(x)

g1, (- (x) = Sy(x) — Ay o (x) k=12...,N—-1 (2.28)
AN () =Ty (x) + (D (Tn(x)2 - 1 x € Gy. (2.28d)

The absolutely continuous part of the measw&y) dx, vanishes outside th&/ bands
B = UB. It is non-negative because the sign&§_; in band By is (—1)**1, due to the
fact thatSy_1(0) > 42 and the interlacing property of its zeros with the oneZgfF 1.
The Dirac-measure lives on the— 1 zeross™ ¥ of Sy_;. The fact that also this measure
is non-negative will be discussed in section 4.

A similar computation can be performed in order to find the measure for the associated
orthogonal polynomial syster{r&,} of (2.2h). One putsin (2.1y; =0 andqo = —1. Inthe
integral (2.11) one uses instead ofS and replaceanﬂi by gui2+ = SHN — Aw, - S,.

In place of (2.13) one uses hejg, 2 + (X;)/q2.+ (%) = S, (X;)/ k1 with the zerosk; of Sv_1.
The normalized measure for the orttmwmal polynomials with positive leading coefficient
and§ =1

1| w5 kika 4
$) = (D" —% S (2.29)
1 . i
n+2 j=1"%
is then
N-1 2
~ k _yk k
6 (r) =Wy de — 3 80 —ENY) 2‘igiqz'i>7(x)/l dr (2.30)
=1 wy k2 S (x)
2 02 ky (11— (T ()2
W(x)_—@—l( U 1152, x € By k=12...,N (2.3)
™ w5 k2 Sn-1(x)
g2,—y(x) = SN(x) — k1 Ay, oy (x) x € Gy k=12,...,N-1 (2.3®)

whereiy _y is given in (2.28) and£" " are the zeros ofy_1(x).
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3. Continued fraction, Stieltjes inversion formula and the measure

The second method to compute the measure for orthogonal polynomials with periodic
recursion formula coefficients relies on the fact that the continued fraction accompanying
this recursion formula is the Stieltjes transform [8] of the orthogonality measure [1b, 9]. In
the periodic case the continued fraction can be given explicitly, and the measure is then
determined with the help of the Perron—Stieltjes inversion formula [10, 11].

The continued fraction which belongs to the recursion formulae for the (not necessarily
N-periodic) associated orthogonal polynomiéts, (x)} and (S, (x)} (see equations (1a%
and (1.B)) is

kyw? ki | ky | kn |
- 2 X(.X) = - T
205 | Y1(x) | Ya(x) | Yu(x)

.. (3.1)

where Y, (x)) is given by (1.B). The factor—k,0%/203 has been introduced for later
convenience. Thath approximation to this continued fraction is fer> 11

kyw? koo ke | ke 1 Sima(x)

T 22T e T T R R A )

3.2)

which follows by induction, using the recursion formulae. If the continued fraction
convergey (x) :=lim,_. o, x.(x). Afundamental theorem (see e.g. [9], theorem 2.4, or [1b],
p 90) states thaf (x) is the Stieltjes transform of the measure

+00
() :/ d® 4 supdo). (3.3)

o X—t

Here d is the real, positive and normalized measure for the orthogSraablynomials
(1.5a) (cf [9], equations (2.1)—(2.5))

2 n+1
/Sn(x)Sm(x) do () = 2Tk o = —>8,  moneNo. (3.4)
wlkl j=1 mMu41

The Perron-Stieltjes inversion formula (see e.g. [9,10]) for a real measure of bounded
variation is

o) —o(t) = —% Iimolemx(t—i—in)dt (3.5

n—+ h

with o(f) = %(G(tk +0 +o—0) fork =1,2. y(x) = x(x) forx €e Candy is
analytic for non-reak.

1 The nth approximation to the continued J-fraction is foe> 1 (see equations (2.1) and (2.2))

ki | dy | dy | _ _ 3,,,1()()

_ X = .
[x—c1 |x—c2 [x —cn S, (x)
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In the N-periodic casey (x) can be calculated explicitly as follows (cf [7]). Consider,
for fixed x, N and parameterk,, »?, the map in the complex-plane

, ki | ko | ky |
IeGo) =2 — _ S S 3.6
VD=2 = 1 T T BGEE (36)

with Y, (x) given in (1.3). By induction, with the help of the recursion formulae, one finds

o Sva) = Sy
v ) = Sy-1(x) z — Sy(x) S

which is for realx a SL(2, R) Mobius transformation due to
1= Det My (x) = =Sy (x) Sy—2(x) + Sy-1(x) Sy_1(x). (3.8)

Because ofN-periodicity —ki0%x (x)/203 is a fixed point of the map (3.6), and can be
computed from (3.7) as

kiw N
21 2 X +() = [2Sn() + Sy-2(0) F v(Tn ()2 = 1} /Sy-1(x) (3.9)

where (3.8) was used, arifl (x) is given in (2.4). FoiZy(x)| < 1, which determinesv
bandsB, k =1,2,..., N, xn.+(x) becomes complex. For the gaps betweenXheands,
G, k=12 ...,N—1, itis real. See figure 1 for the Fibonacci case= 5,r = 2.
IntroducingAy +(x) given in (2.®), this is rewritten as

kiw?
= 57 K00 = S0 = Ay (0} /Sy-a@) (3.10)
0
xn,—v (x) is for largex proportional to ¥xt. The sign choice for values in the bands
and gaps will be given below.
The measure can now be determined from the inversion formula (3.5). The absolutely
continuous part of the spectral measure, ¢x) = w(x) dx, is found from

w(x) = go'ac(x) = —% nir?-o Imy(x +in) <oo. (3.11)

dx

x(x) = xny(x) has to be defined such that(x) = x(x) holds for complexx. This
single-valued function is calleg (x). w(x) lives therefore on the band3, and coincides
with (2.28), after the sign of the square-root (i.e. of the Riemann sheet) has been chosen
such thatw(x) is hon-negative. See section 4 for the proof that the sign choice inkj2.28
leads to positivaw.

The discrete part of the spectral measure (sum of Diramctions) originates from the
simple poles ofy (x) with their residues determining the height of the jumps of the measure

Sy(x) — Ay(x)

3.12
Sy 2 (3:12)

2N
dopirac(x) = k——gz &)
7 =1

t The x-asymptotics cannot be found from (3.10). One u&&$ — Ay _yv)/Sn-1 = SN,l/(SN — Ay (oyN+1)
which is identity (2.23) withgo = 0, g1 = 1, equations (24 and (1.2).
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where the sign of the square-rooti (x) of (2.6b) has been chosen &s 1) for x € Gy,
like in the calculation leading to (2.28 This choice will be seen in the next section to
produce positive jumps i (x) at the zeroi”v Y of Sy_1. For finite N and parameters
{ka}, {02} there are no other singularities @f(x) which could contribute to the singular
part of the measure (cf [12], ch XIll, p 140).

The measure for the orthogong$, (x)} polynomials can be calculated in a similar
fashion by taking into account also their first associated polynonigf3(x)}, defined
in (2.20). Note that because of the cyclic property of the trace dmmkriodicity one has

Tv(x) = Syx) = S ,(x))/2 = Ltr My = k1T (x) (3.13)

with My = Ryi1Ry -+ - R2. More details are found in appendix A.2.
We have thus reproduced the results of the previous section.

4. General remarks and Fibonacci chain examples

We first state a simple conclusion concerning the discrete measure (3.12), which will show
its non-negativity. With the mentioned sign choice the numerator ofktheerm can be
rewritten, with (2.®), (2.4), and (3.8), like

Sy =iy =2(Sy+S8y2) + (—l)k“\/(%(szv + 31\/—2))2 — Sn_18v-1. (4.1)
Evaluated at the zerg, = £ of Sy_; this becomes

O(—(Sy +Sy-2)lx) Sy +Sy-2)ly,  for keven

. . 4.2)
@((SN + SN—2)|xA) (Sy + ’SN—Z)lxk for k& odd

(Sv = ANy = {

with the step functior®(x). Due to (3.8)(Sy + Sx-2)ls=((Sn (x))? — 1) /Sy (x). The
final result for the discrete measure is

-1

2 N
“0 Z 5 — 5" O((9) Sy () + Sy—2(x)))
Wy

k=

Sy(x) + Sy z(x) dr

dorgirag (1) = :
_SN 1

DII’aC

2 w
ko
(4.3)

which is always non-negative because the signurs of, (5" ") is (—1)*.

Two remarks are in order.

(i) There will be no contribution to the discrete measure from those zera$yof
which satisfy 7y (6" ") = +£1. In this event the zero ofy_; coincides WI'[h one of
the band boundanes and from the definition Bf and (3.8) one fmds‘SN(g l))—
Sy ) =

(i) A comment on band degeneracy. A gap will disappear whenevefy + (—1)%*1
has a double zero at, say;. Because the zere U of Sy_1 lies in the gap or
on one of the adjacent band boundaries one )has s(N D For the same reason the
kth zero of Sy_; is then alsox;. Due to (3. 8)SN 2(xx) = —1/Sy(x1), and therefore
Sy (xp) + 1/Sy (x) = 2(=1)k (definition of Ty). ThusSy (xx) = (—1)* = —Sy_2(xx), and
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there will be no contribution to the discrete part (4.3) of the measure from such disappearing
gapsGi .

Next, we consider some examples of Fibonacci chains.

In the N-periodic Fibonacci case, = 1 andY, (x) = 2(1—r"*®x), with the N-periodic
binary sequencg:y (n)} obtained by continuing the firé{ entries of{iz(n)} given by (1.11)
periodically. All polynomials will now depend oW and the mass ratie = m;/mo. We
shall use non-script symbols for these polynomials andXhe labels will be clear from
the context.

(a) First we check thenono-atomic case = 1. The results have already been given in
the introduction. Remark (ii) applies for aN — 1 disappearing gaps.

(b) PUtN =2, r =mu/mp # 1,i.e. AB-chains We first show that there is no discrete
part (4.3) of the measure. Here remark (i) applies. The zey @)= 2(1 — rx) (see [4a])
is x1 = 1/r, and because

To(x) = 2rx?> =21+ r)x + 1 So(x) = drx?>—41+r)x+3 (4.4)
one hasS;(1/r) = Tg(l/r)=—1=—§oi. The weight function is given by

2 1 1 1
w(x):r\/—x<x—>(x—1)<x—1—>/x—‘ (4.5)
b r r
for x in any of the two bands
1 1
r>1: B]_=|:O,il Bz:[l,l+] (46&)
r r
1 1
r<l: B]_Z[O,l] Bz=|:,l+:|. (46))
r r
The weight function (2.30) for the associated polynomi{algx)} is found to be
1 —
o= =y 4.7)
ro|x—1

for x in the bands (4.6) and zero otherwise.
(c) PutN =3, r =my/mp # 1, i.e. infinite ABA-chains Now the discrete measure

is present because zeros ®f satisfy 2x- =1+ r F+/(r — 1)2+r and Sg(x$)+.§1(x¢):
2(r — Dxx # 0. Therefore

4r {(r—l)x_é(x—x_)dx forr >1
[(r —1)24r |l (A—7r) x4 8(x —xy)dx forO<r <1.
The bands are, depending on gigr- r),
1 1 3 2r+1 1
> _ — _ — —bD_ R = —_— .
r = 1 B]_ |:0, 2}’:| Bz |:2rb (V), Zr] B3 |: 2 s 2rb+(l")j| (4 %)

r<l: B;= [o, 2];b_(r)i| B, = [1 M} B3 = [3 1b+(r)] (4.%)

(4.8)

dopirac =

2r’ 2 2r’ 2r

1 In the N-periodic Fibonacci case an example is N¥8 B A)2 chains) where one finds double zerosZgf+ 1

at the zeros off3 for k = 1, 3, 5.

1 This is an example where a zero 8f,_1 coincides with a band boundary without having band degeneracy (no
double zero of7y F 1). It seems to be a counterexample to one part of the statement found in [6], lemma 2.2,
top of p 47 (the ‘if’ part).
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with bo(r) =r + g + M'
The weight function (2.28 becomes fox € B, , k=1,2,3,

w(x) = E}"2
T

o N TrO — @+ 1720) (0 — @/2r) (x = (/2) (x — (1/20)b (1) (x — (1/2r)b.. (1))
(=DM = (1/2r)d-(r) (x — (1/2r)d.(r))

(4.10)

withd.(r)=14+r+£/r2—r+1.

(d) PutN = 4,r = my/mp # 1, i.e. ABAA-chains There is no contribution to
the discrete measure because one finds (see [4a]) for the zer®s ofz x; = 1/r,
2rxy = 1+ 71+ r2+ 1, Sa(xp)+S2(x)=0 for k = 1, +. Like in the N = 3 case one
can give the bands and the weight function explicitly.

5. Green'’s functions and the measurg

The purpose of this section is twofold: (i) to define the Green’s functions of the general
N-periodic problem which satisfy specific boundary conditions appropriate to the use of the
Bloch—Floquet solutions encountered in section 2. (ii) To find the orthogonality measures
computed in this work from these Green’s functions. We shall also give the relation of
the differential spectral density (or differential density of states) equation (1.8) to theses
Green'’s functions which turns out to be the standard one. This should clarify the difference
between the absolutely continuous part of the measure and the spectral density.
The Green’s functiong, ,,(x) for the N-periodic problem are defined far, m € Ng

byt
Yn+1(x) gn,m (X) - gn+1,m (x) - kn+l gn—l,m(x) == 8n,m . (51)

The Y-coefficient is defined in (1. The inputs ar&j_; ,,(x) andGo,,(x). The Green’'s
functions with the proper boundary conditions turn out to be the ones constructed from the
Bloch—Floquet solutions (2.6). This solution is of the type

Gnom (X) = @ (X) Gmaxn,m)+1, (— 1% (X) Gmingr,m)+1, (11 (X) - (5.2)

The sign choice pertains to ga,, for which ¢, ;1 (1« — 0 forx € G, andn — oo (see
equation (2.8)). The coefficient, is found from (5.1) puttingg = m and using the recursion
formula for theg, +. For general inpu; andgo one finds with the Wronskian (2.21)

m+1 l
[ *iGumx) =
1 W(q1, gn+1) Ay, (x) — Ay —ppaa(X))

X Gmaxn,m)+1, (=)k (X) Gminer,m)+1, (-1t (X) (5.3)

1 This section is inspired by a paragraph found in [7] for periodic problems.
1 The dependence oN, {k,}, {wﬁ} is suppressed. For the monic polynomials (2.1) one usesc,+1) Q,L,,, (x) —

- - ] 2 2
dn+1 gn—l,m (x) — g/1+l,m (x) = 8/1,/11- The relatlon(l_[;l:]_ %) gn,m = (_2)/11—/1-%—1(1—[;’”:&1 %) gn,m holds.
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This is the Bloch—Floquet Green'’s function vanishing fevalues in gaps fon — oo with
fixed m andvice versa

Our interest is in the diagonal Green'’s functiofis, (x) which are in factgo and g1
independent. This is due to identity (2.23) which shows that the Wronskian drops out. The
final result can be written in terms of theth associated polynomialsS(™ (x)} defined in
(2.20) like

n+1
(Hk,-)gn,nm SV @/ (2 (Tv@)* - 1), (5.4)
i=1

The sign of the square root depends on the gap and band number. Kkt tep,Gy, it is
(=1, for thekth band,B; it is (—1)**1 in accordance with the remarks found in section 2.
In particular, one has for the input quantities

1

G11(x) = S Sn-100/y (Tv(@)” ~ 1 (5.5)
1 4

Goo() = 5 Sv-1()/y (T() — 1. (5.50)

The imaginary part of these input Green’s functions are inversely related to the weight
functions computed in this paper. Fore By, k = 1,2,..., N, one finds

MGy 1) = lim MGy _a(x +im) = L=DF Syoan 1= (Tv (). (5.6)

In the gaps the imaginary part is zero. This shows that the absolutely continuous part of the
{S,(x)} measure (the weight function), which lives on the bands, is essentially the negative
inverse of the imaginary part of thg_; _1 Green'’s function.

—ImG_1 _1(x) = 0}/ (TiW(x)) (5.7)
with (2.28) andx in the bands. Similarly
— 1M Goo(x) = W/ (whkath(x)) (5.8)

with (2.3M). The average over the elementaMrunit of the chain for the diagonal
Green’s functlonﬁ,m(x) belonging to the monic polynom|a[sS (x)}, can be computed
with the help of the Christoffel-Darboux identities for the Bloch—Floquet solutions (2.6).
These identities follow from the recursion formula (cf [1]), and they are (remember that
kiko . ..ky = 1 in the N-periodic case)

N-1 2

wq
-2 7% +(0) gnya,— (%)
; a)n+l l_[n+lk o o
=N+ () @1 () —gn1+ () gy () +q1.4+(X) g5 (X) — qo+(x) g1 _(x) .

(5.9)

There is an alternative version of this identity where the derivative acts on the left factor
and an overall minus sign appears. This happens because the confluent Christoffel-Darboux
identity implies

gn+(X) gn,—(x) = gn +(X) N1, () — g1+ (X) g0— (X) + go4+(x) g1, (x) =0 (5.10)
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which is in fact the Wronskian identity analogous to (2.21) W(gn+1.+, gn+1.-)- The
connection betweef, , (x), for the monic case, and, ,,(x) is

2
gn,n(x) = _2% gn,n(x) . (511)

wn+l

Using equations (5.4) and (2.23) for tlie + 1)th associated polynomials, identity (5.9),
and the definitions (2.6) with (1.2), a lengthy calculation shows that for general igguits
andqa (x)

é W) =T, )/ (Ty () — 1 (5.12)

MZ

Il
(=}

n

with the sign convention for gaps and bands mentioned earlier. Therefore, the imaginary
part produces the differential spectral density (or differential density of states) known from
the differentiation of the Bloch—Floquet phase:

2 lim m Zgnn(xm) G (x) (5.13)

given by (1.8) forx values in the bands and zero otherwise. This result corroborates the
choice of the Bloch—Floquet Green’s functions. As a by-product we find from (5.12), (5.11)
and (5.4) the identity

N-1 a)(z)
+l
n=0 wn+l [Tk
for the N-periodic case of the general associated polynomials (2.20) which collapses to the

well known identity (1.10) for Chebyshev polynomials for the mono-atomic case.

SUP(x) = -7,/ (x) (5.14)
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Appendix

A.1. Derivation of equation (2.14) (cf [6])

In the z-plane Iy is given by (2.11) withI' = I'p. defined by (2.12). The sign choice

of g,+1.+ depends on the ban#, k = 1,2,..., N, where it is(—1*1. ¢go = 0 and

g1 = 1in (2.&) with (1.2). The relation (2.14) with the appropriate sign choice for
An(x) = Ay —pra(x) is used in order to rewritg,; 1+ of (2.11). The piece withy, 1 +

is, after a change of variable, seen to be the negative of the original intggsith the
relevantg,1+ choice forx € B;,. The same change of variable is used to rewrite the
second piece coming from (2.14) as twice the integral over only half of the contour, namely
overI'p in the lower half of thez-plane.
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A.2. Continued fractions for th{a?,,} measure calculation

The {S,(x)} recursion relation is given by (Ibh Their first associated polynomials are
{82 (x)} defined by (2.20). The normalized measuée abeys

n+2 2

A k
fsn(x)sm(x) dé (x) = /?l ]"[kjw’%zan,m — 2 "%, m,n € No. (A1)
2 j=1 a)2 mVl+2

The continued fractioi (x) which is related to this measure like in (3.3) has approximants

X, (x) =

5,5221<x)__2w3< ke | ks | ki |___.>
S1(x) ko2 \ | Ya(x) | Y3(x) | Yira(x) '

(A.2)

The tilde quantities are monic polynomialsS®Y = &,. The corresponding Kbius
transformation is

f (x. Z) — Z/ _ kz | _ k3 | L kN+1 | _ Sj(\,zlz(x) Z— SI(\lel(x)
VETEE T 0 T s | Twea) =2 Gyan 7 — Ge)
(A3)

The fixed point solution can be written like

kp? X A
_ %xNi(x) = [Sv () = kahw 4 (1)} /Sy-1(x) (A.4)
0

where Ay.s = Ty(x) £/(Ix)2 — k¥ = kiy,+ Was used which follows from (3.13)
and (2.®). The measuredal is then computed like in (3.5) frof. With the definition
(2.29) of the{s,} polynomials one findg' do §,(x)$,(x) = §,,, with do given in (2.30).
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